
FPGA Implementation of Montgomery Modular

Multiplier
Velibor Škobić, Branko Dokić, and Željko Ivanović

Abstract – Montgomery architectures of modular multipliers

with one and two bits scanning are described in this paper.

Multipliers have been described using hardware description

language – VHDL, and implemented on FPGA integrated circuit

EP4CE115F29C7. Comparative analysis of multiplier regarding

minimum calculation time, maximum operating frequency and

number of used logic elements of integrated circuit is given.

Based on implemented modules, analysis of RSA module for data

encryption is performed.

Keywords – Modular multiplication, Montgomery algorithm,

RSA algorithm

I. INTRODUCTION

Data protection can be achieved using symmetric and

asymmetric algorithms. Encryption procedure using

symmetric algorithms occurs by substitution, transposition,

shifting, as well as logic operations (XOR) over data bytes

(AES). These operations are much simpler for hardware

implementation, which leads to lower number of resources

and higher operating speed of encryption module.

Symmetric algorithms are mostly used for data encryption.

Asymmetric algorithms are for one order of magnitude

slower than symmetric ones. They are used for keys

exchange and digital signatures. Data protection occur

using quite demanding mathematical operations. One of the

most commonly used asymmetric algorithms is RSA

algorithm [1]. Data protection procedure occurs in a way

that key message (P) is exponentiated onto public key (e),

and then determine the remaining of dividing operation

with public key (m). For hardware realization of RSA

algorithm, binary algorithm of modular exponentiation is

typically used [2, 3]. Using binary algorithm, modular

exponentiation procedure is reduced to iterative modular

multiplication (A∙Bmodm). Some of modular multiplication

algorithms are described in [2]. One of the most effective

algorithms is Montgomery algorithm [4]. Calculation

procedure is carried out by iterative summation. This

algorithm is highly efficient and very simple for hardware

implementation. It is used in algorithms with a large

number of modular multiplications.

In second chapter, fundamentals of Montgomery

algorithm modular multiplication are given. Two ways of

Montgomery modular multiplication are described: with

scanning of one bit and two bits. Two RSA data encryption

algorithms using Montgomery modular multiplier have

been described. In third chapter, hardware realization of

Montgomery module is described. Fourth chapter presents

simulation results of implemented modules. Results are

summarized in the conclusion.

II. MONTGOMERY ALGORITHM

A. Montgomery algorithm

Montgomery algorithm is efficient and simple for

hardware implementation. The result of modular

multiplication is given by the following equation:

1MonPro(, ,) modA B m A B R m (1)

The advantage of this algorithm is that calculation is

performed without dividing with m, but dividing with

number R. Number R is taken in the form of 2
k
, where k is

the number of bits needed to represent input data. Number

R
-1

 is inverse number of number R modulo m. For hardware

implementation, dividing with 2
k
 is simple shifting

operation of k bits to the right. As shown in equation (1),

the result of modular multiplication contains number R
-1

.

This number can be eliminated so that input data A and B

convert to leftover system modulo m (A=MonPro(A,R,m),

B=MonPro(B,R,m)), and then the result of modular

multiplication D converts so that multiplies with number 1

(D=Monpro(D,1,m)). As a result, we have D=A·Bmodm.

Montgomery algorithm modular multiplication is given by

the following pseudo code:

Result D=(A·B)modm

1. D=0

2. from i=0 to i=k-1

a. D = D + A·Bi

b. D = (D + D(0)·m)/2

3. output D
Listing 1

Number k is the number of bits used for data

representation. This algorithm passes through k iterations,

where k is the number of bits used for representation of

numbers A, B and m. Value of bits of number B (bi) has

been scanned. Depending on the value of scanned bit bi

number A is added to number D. Then, in order to perform

reduction with 2 in every iteration, if the current result D is

odd, number m (m is a prime number in RSA algorithm) is

Proceedings of Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

132

added. If not, zero is added. For this realization, two

adders, one shift register and control logic is needed.

Number of iterations can be reduced by scanning two

bits of number B (bi, bi+1) in one iteration. Now, number of

cycles needed for calculation is halved (g=k/2). Based on

this, Montgomery algorithm pseudo code can be written as

follows:

Result D=(A·B)modm

1. D=0

2. from i=0 to i=g-1

a. D = D + A·Bi

b. D = (D + D(0)·m)/2

c. D = D + A·Bi+1

e. D = (D + D(0)·m)/2

3. output D
Listing 2

Summation, depending of value of scanned bits bi, bi+1, can

be grouped in one equation, as well as the condition for

summation with number m. At the end, result is divided by

4, i.e. content is shifted two positions to the right. Based on

these transformations, following algorithm is formed:

Result D=(A·B)modm

1. D = 0

2. from i=0 to i=g-1

a. D = D + A·Bi + 2A·Bi+1

b. D = (D + U1·m + U2·2m)

c. D = D/4

3. output D
Listing 3

Condition U1 for summation of number m with result D has

been defined using the equation:

1 (0) (0)iU b A D (2)

while condition U2 for summation of number 2m with

result is defined with:

1

1

2

[1,0] [1,0] [1,0]

[1,0]

2 [1,0]

(1)

i

i

U D b A

U M

b A

U U

(3)

First algorithm that scans only one bit bi passes through k

iterations. Second algorithm that scans two consecutive bits

bi and bi+1 passes through k/2 iterations. In the first one,

summation is performed with numbers A and m, depending

on current result value and value of bit bi. Second one, in

one iteration adds numbers A, 2∙A, m and 2∙m, depending

on the state of conditions U1, U2 and values of bi and bi+1.

B. Carry Save Adders

For implementation of Montgomery algorithm modular

multiplication, special attention is paid to the

implementation of the adder. Better performances

regarding speed can be adjusted using CSA (Carry Save

Adders). CSA has three input and two output vectors.

Summation result consists of vector C and vector S,

represented in redundant form. Vector C represents carry

bit vector, while vector S is vector of the current bit sum.

The summation result is:

(,)C S X Y Z (4)

Carry bit in CSA realization does not propagate through

full adders, but it’s remembered in the shape of vector C.

Propagation time of carry bit is eliminated, and hence result

waiting time has been reduced. In order to get final result,

vectors C and S needs to be summated using full adders,

e.g. RCA (Ripple Carry Adder).

C. RSA algorithm

Montgomery modular multipliers are used for

implementation of RSA module for data protection. Data

encryption using RSA algorithm is performed as follows:

modeC P m

where P is data that needs to be encrypted, e and m are

public keys, and C encrypted data. Data decryption is

performed as follows:

moddP C m

where the pair of numbers d and m is a private key.

Encryption and decryption procedures are very similar. For

encryption, public key e has been used as exponent, and

private key d for decryption. For hardware implementation

of modular exponentiation, method of exponent bit

scanning is suitable [2]. Depending of the direction of

scanning, there are two methods: scanning from left to right

and from right to left. Algorithm from right to left is shown

by the following pseudo code [3]:

From right to left

Result modeC P m

1. 22 modnK m

2. (1, ,)Z Monpro K M

3. (, ,)P Monpro P K m

Proceedings of Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

133

4. from 0i to 1i k

a. if 1ie then (, ,)Z Monpro Z P m

b. (, ,)P Monpto P P m

5. (1, ,)Z Monpro Z m

6. C Z
Listing 4

Algorithm from left to right is presented as [3]:

From left to right

Result modeC P m

1. 22 modnK m

2. (1, ,)Z Monpro K M

3. (, ,)P Monpro P K m

4. from 1i k to 0i

a. (, ,)Z Monpto Z Z m

b. if 1ie then (, ,)Z Monpro Z P m

5. (1, ,)Z Monpro Z m

6. C Z
Listing 5

For right to left algorithm, two Montgomery modular

multipliers are needed working in parallel, while for left to

right algorithm, only one sequentially operated multiplier is

needed. Algorithm from left to right saves the number of

Montgomery multipliers, while the number of calculation

iterations doubles. Number of cycles for right to left

algorithm is k+3, and for left to right algorithm 2(k+3).

III. HARDWARE IMPLEMENTATION

Figure 1 shows Montgomery modular multiplier

architecture with one bit scanning (Listing 1). It consists of

C_sig and S_sig registers, shift register, multiplexer for

signal routing, CSA network and control logic. Role of

C_sig and S_sig registers is to temporary memorize the

current result. Shift register on its output generate bit bi.

Signals 0 and A are routed depending of the value of bit bi

towards CSA network input. CSA network consists of two

CSA. Inputs of CSA network are C_sig and S_sig signals,

and output signals of first and second multiplexer. CSA

network output signal states are memorized in C_sig and

S_sig registers. Control logic controls the operation of the

shift register, generate signal U1 and controls drives the

state of C_sig and S_sig registers. For the final result to

come, k+2 clock cycles are needed. In first clock cycle,

registers C_sig and S_sig are reset and data B is written

into shift register. Through next k cycles, summation

defined by loop inside Listing 1 is performed. At k+2 clock

cycle, result of modular multiplication (C_sig and S_sig) is

converted to normal form (D) using full adder.

Fig. 1. Architecture of Montgomery modular multiplier with one

bit scanning

Figure 2 shows architecture of Montgomery modular

multiplier with two bits scanning (Listing 3). It consists of

C_sig and S_sig registers, shift register, multiplexer for

signal routing, CSA network and control logic. Role of

registers C_sig and S_sig is to temporary memorize current

result. Shift register on its output generate bites bi and bi+1.

In dependence of bits bi and bi+1 value, signals 0, A and 2A

are routed towards CSA network input. Depending of the

state of signal U1 and U2, signals 0, m and 2m are routed

towards CSA network over multiplexer MUX2.

Fig. 2. Architecture of Montgomery modular multiplier with two

bits scanning

This CSA network architecture consists of four CSA

adders. CSA network inputs are C_sig and S_sig signals,

and output signals of first and second multiplexer. Output

A m 0 0

B MUX 1 MUX 2

Shift reg.

CSA

CSA

S_sig C_sig

U1

Control

logic

bi

A m 0 0

B MUX 1 MUX 2

Shift reg.

CSA CSA

S_sig C_sig

U2

Control

logic

bi

2A 2m

bi+1

CSA

CSA

U1

RCA

D

RCA

D

Proceedings of Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

134

signals of CSA network is then memorized into registers

C_sig and S_sig. Control logic control shift register,

generates U1 and U2 signals and control operating states of

C_sig and S_sig registers. In order to obtain the final result,

k/2+2 clock cycles are needed. In the first clock cycle,

registers C_sig and S_sig are reset and data B is written

into the shift register. During the next k/2 cycles,

summation defined by loop inside Listing 3 is performed.

At k/2+2 clock cycle, result of modular multiplication

(C_sig and S_sig) is converted in normal form (D) using

full adder.

Based on presented architectures, two modules for

Montgomery modular multiplication have been

implemented. The first one is with one bit scanning

Montgomery_b1, and second one with two bits scanning

Montgomery_b2. Modules are described using hardware

description language (VHDL) and synthesized by Quartus

II and ModelSim software packages. Analyze of number of

required resources for module implementation, maximum

operating frequency and minimum calculation time has

been performed.

Using implemented Montgomery modules, analyze of

RSA modules for data encryption is carried out. Based on

RSA algorithm right to left and left to right with

Montgomery modular multipliers, encryption modules

RSA_Montgomery_rl_b1, RSA_Montgomery_rl_b2,

RSA_Montgomery_lr_b1 and RSA_Montgomery_lr_b2 are

implemented. These modules are analyzed in terms of

number of used resources and maximum data encryption

speed.

IV. RESULTS

Implementation of the Montgomery modular multipliers

and RSA moduls on FPGA integrated circuit

EP4CE115F29C7, family Cyclone IV, Altera [5] is done in

this paper. This component contains 266 embedded

multipliers (18x18 bits), 4 PLL blocks, 3888 Kbits of

embedded memory, 528 I/O pins and 114480 logic

elements. Preference for FPGA circuit is caused by

availability, ease of system testing, flexibility, relatively

good performances in the means of speed and power

consumption.

Fig. 3. Signal waveforms of Montgomery_b1 module

Fig. 4. Signal waveforms of Montgomery_b2 module

Figures 3 and 4 shows results of Montgomery_b1 and

Montgomery_b2 modules, respectively. For input signal

values such as: A=688, B=640 and M=3337, where k=16,

result of Montgomery modular multiplication is the number

D=111.

Figure 5 presents result of logic resources analysis

needed for implementation of previously mentioned

modules. Montgomery_b1 module occupy less resources

comparing to Montgomery_b2 module, as a consequence of

smaller CSA network and logic for signal routing.

Fig. 5. Number of used logic elements as a function of data

length

Table 1 shows module analysis results regarding

maximum operating frequency. Based on given results,

maximum operating frequency is obtained for

Montgomery_b1 module, at various data length. This is a

consequence of lower signal propagation time through

CSA network, consisted of two CSA adders.

TABLE I

MAXIMUM OPERATING FREQUENCY [MHZ]

k Montgomery_b1 Montgomery_b2

16 323.94 160.77

32 188.04 159.08

64 206.83 157.65

128 234.03 152.86

256 252.4 152.84

512 239.87 145.31

1024 298.33 126.2

2048 173.19 126.98

Multiplying period of maximum operating frequency

(Table I) with number of clock cycles used for processing

one data, we get minimum calculation time for one data as

Proceedings of Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

135

a function of data length. Those results are shown on Fig.

6. Lower calculation time is obtained for Montgomery_b2

implementation. Maximum operating frequency of

Montgomery_b2 module is slightly lower then for

Montgomery_b1 module, but the number of clock cycles

needed for calculation is twice lower, whereby better

results are obtained with respect to calculation time.

Fig. 6. Minimum calculation time as a function of data length

Analyzing RSA module for data encryption, following

results are obtained. On Fig. 7, number of logic elements of

implemented modules as a function of data length is

shown.

Fig. 7. Number of used logic elements as a function of data

length

Fig. 8. Maximum data encryption speed as a function of key

length

Least number of logic elements occupies implementation

of left to right algorithm with Montgomery modular

multiplier one bit scanning. Most resources have been used

by implementation of right to left algorithm with

Montgomery modular multiplier two bits scanning. Fig. 8

presents results of module analysis in terms of maximum

data encryption speed. Best results have been obtained by

right to left algorithm and Montgomery modular multiplier

with two bits scanning. For key length of 1024 bits,

maximum operating frequency is 55.32 [kb/s].

IV. CONCLUSION

Multipliers are implemented on Altera’s Cyclone

family FPGA integrated circuit EP4CE115F29C7.

Synthesis and simulation are performed by Quartus II and

ModelSim software packages. Number of used logic

elements depends of data length and is higher for multiplies

architectures with two bits scanning. For example, for data

length of k =128 bits it is a 55% increase, and for k=1024

bits is 56%. Maximum operating frequency and minimum

calculation time also depends of data length. Modular

multiplier with one bit scanning has higher operating

frequency, and lower calculation time. Maximum

frequency of Montgomery_b1 module is in the range about

324 MHz for k=16 up to 188 MHz for k=1024 bits. For

Montgomery_b2 module, this frequency is in the range of

161 MHz up to 126 MHz. Calculation time is in the range

of 0.05µs (k=16 bits) up to 5.45µs (k=1024 bits) for

Montgomery_b1, and from 0.06µs up to 4.07µs for

Montgomery_b2. Average calculation time in

Montgomery_b2 implementation is decreased for about

23% comparing to Montgomery_b1 implementation. Data

encryption speed is highest for Montgomery_rl_b2

implementation. For key length of k=1024 bits, maximum

encryption speed is 55.32 kb/s, and number of used logic

elements is 36960. The lowest number of used logic

elements is at Montgomery_lr_b1 implementation. For key

length of k=1024 bits, number of used logic elements is

22649, and maximum encryption speed 26.28 kb/s.

REFERENCES

[1] R. L. Rivest, A. Shamir, L. Adleman, “A Method For

Obtaining Digital Signatures And Public-Key Crypto

Systems,” Communications of the ACM, vol. 21, no. 2,

pp. 120-126, Feb., 1978.

[2] C. K. Koc. “RSA Hardware Implementation”. TR 801,

RSA Laboratories, April 1996.

[3] V. Škobić, B. Dokić, Ž. Ivanović. “FPGA

Implementacija RSA algoritma,” Proccedings of 57th

ETRAN Conference, Zlatibor, Serbia, June 3-6, 2013,

pp.EL3.8.1-5.

[4] P. L. Montgomery, “Modular Multiplication Without

Trial Division,” Mathematics of Computation, vol. 44,

no. 170, pp. 519-521, Abbrev. Apr., 1985.

[5] “Cyclone IV EP4CE115F29C7 Data Sheets,”

http://www.altera.com.

Proceedings of Small Systems Simulation Symposium 2014, Niš, Serbia, 12th-14th February 2014

136

