Proceedings of Small Systems Simulation Symposium 2014, Nis, Serbia, 12th-14th February 2014

FPGA Implementation of Montgomery Modular
Multiplier

Velibor Skobi¢, Branko Doki¢, and Zeljko Ivanovié

Abstract — Montgomery architectures of modular multipliers
with one and two bits scanning are described in this paper.
Multipliers have been described using hardware description
language — VHDL, and implemented on FPGA integrated circuit
EP4CE115F29C7. Comparative analysis of multiplier regarding
minimum calculation time, maximum operating frequency and
number of used logic elements of integrated circuit is given.
Based on implemented modules, analysis of RSA module for data
encryption is performed.

Keywords — Modular multiplication, Montgomery algorithm,
RSA algorithm

I. INTRODUCTION

Data protection can be achieved using symmetric and
asymmetric algorithms. Encryption procedure using
symmetric algorithms occurs by substitution, transposition,
shifting, as well as logic operations (XOR) over data bytes
(AES). These operations are much simpler for hardware
implementation, which leads to lower number of resources
and higher operating speed of encryption module.
Symmetric algorithms are mostly used for data encryption.
Asymmetric algorithms are for one order of magnitude
slower than symmetric ones. They are used for keys
exchange and digital signatures. Data protection occur
using quite demanding mathematical operations. One of the
most commonly used asymmetric algorithms is RSA
algorithm [1]. Data protection procedure occurs in a way
that key message (P) is exponentiated onto public key (e),
and then determine the remaining of dividing operation
with public key (m). For hardware realization of RSA
algorithm, binary algorithm of modular exponentiation is
typically used [2, 3]. Using binary algorithm, modular
exponentiation procedure is reduced to iterative modular
multiplication (A-Bmodm). Some of modular multiplication
algorithms are described in [2]. One of the most effective
algorithms is Montgomery algorithm [4]. Calculation
procedure is carried out by iterative summation. This
algorithm is highly efficient and very simple for hardware
implementation. It is used in algorithms with a large
number of modular multiplications.

In second chapter, fundamentals of Montgomery
algorithm modular multiplication are given. Two ways of
Montgomery modular multiplication are described: with
scanning of one bit and two bits. Two RSA data encryption
algorithms using Montgomery modular multiplier have
been described. In third chapter, hardware realization of
Montgomery module is described. Fourth chapter presents

132

simulation results of implemented modules. Results are
summarized in the conclusion.

Il. MONTGOMERY ALGORITHM
A. Montgomery algorithm

Montgomery algorithm is efficient and simple for
hardware implementation. The result of modular
multiplication is given by the following equation:

MonPro(A,B,m)=A-B-R™ modm (1)
The advantage of this algorithm is that calculation is
performed without dividing with m, but dividing with
number R. Number R is taken in the form of 2, where k is
the number of bits needed to represent input data. Number
R is inverse number of number R modulo m. For hardware
implementation, dividing with 2% is simple shifting
operation of k bits to the right. As shown in equation (1),
the result of modular multiplication contains number R™.
This number can be eliminated so that input data A and B
convert to leftover system modulo m (A=MonPro(A,R,m),
B=MonPro(B,R,m)), and then the result of modular
multiplication D converts so that multiplies with number 1
(D=Monpro(D,1,m)). As a result, we have D=A-Bmodm.
Montgomery algorithm modular multiplication is given by
the following pseudo code:

Result D=(A-B)modm
1. D=0
2. from i=0 to i=k-1
a.D=D+AB;
b. D = (D + D(0)-m)/2
3. output D
Listing 1

Number k is the number of bits used for data
representation. This algorithm passes through k iterations,
where k is the number of bits used for representation of
numbers A, B and m. Value of bits of number B (b;) has
been scanned. Depending on the value of scanned bit b;
number A is added to number D. Then, in order to perform
reduction with 2 in every iteration, if the current result D is
odd, number m (m is a prime number in RSA algorithm) is

Proceedings of Small Systems Simulation Symposium 2014, Nis, Serbia, 12th-14th February 2014

added. If not, zero is added. For this realization, two
adders, one shift register and control logic is needed.

Number of iterations can be reduced by scanning two
bits of number B (bj, bi+1) in one iteration. Now, number of
cycles needed for calculation is halved (g=k/2). Based on
this, Montgomery algorithm pseudo code can be written as
follows:

Result D=(A-B)modm

1. D=0
2. from i=0 to i=g-1
a.D=D+AB;

b. D = (D + D(0)-m)/2
c.D=D+ABij
e. D = (D + D(0)-m)/2
3. output D
Listing 2

Summation, depending of value of scanned bits b;, b1, can
be grouped in one equation, as well as the condition for
summation with number m. At the end, result is divided by
4, i.e. content is shifted two positions to the right. Based on
these transformations, following algorithm is formed:

Result D=(A-B)modm

1.D=0

2. from i=0 to i=g-1
a.D=D+AB;+2ABj
b.D=(D +U;m+ Uy:2m)
c.D=D/4

3. output D
Listing 3

Condition U; for summation of number m with result D has
been defined using the equation:

U, = b,A(0)® D(0) ©

while condition U, for summation of number 2m with
result is defined with:

U[L 0] = D[, 0] +b, - A[L, 0] +
+U,-M[L0]
+b,,-2- AL 0]

U,=U()

®3)

First algorithm that scans only one bit b; passes through k
iterations. Second algorithm that scans two consecutive bits
b; and b;.; passes through k/2 iterations. In the first one,
summation is performed with numbers A and m, depending
on current result value and value of bit b;. Second one, in

133

one iteration adds numbers A, 2-A, m and 2-m, depending
on the state of conditions U;, U, and values of b; and bj,;.

B. Carry Save Adders

For implementation of Montgomery algorithm modular
multiplication, special attention is paid to the
implementation of the adder. Better performances
regarding speed can be adjusted using CSA (Carry Save
Adders). CSA has three input and two output vectors.
Summation result consists of vector C and vector S,
represented in redundant form. Vector C represents carry
bit vector, while vector S is vector of the current bit sum.
The summation result is:

(C,S)=X+Y+Z (4)

Carry bit in CSA realization does not propagate through
full adders, but it’s remembered in the shape of vector C.
Propagation time of carry bit is eliminated, and hence result
waiting time has been reduced. In order to get final result,
vectors C and S needs to be summated using full adders,
e.g. RCA (Ripple Carry Adder).

C. RSA algorithm

Montgomery modular multipliers are used for
implementation of RSA module for data protection. Data
encryption using RSA algorithm is performed as follows:

C=P*modm

where P is data that needs to be encrypted, e and m are
public keys, and C encrypted data. Data decryption is
performed as follows:

P=C%modm

where the pair of numbers d and m is a private key.
Encryption and decryption procedures are very similar. For
encryption, public key e has been used as exponent, and
private key d for decryption. For hardware implementation
of modular exponentiation, method of exponent bit
scanning is suitable [2]. Depending of the direction of
scanning, there are two methods: scanning from left to right
and from right to left. Algorithm from right to left is shown
by the following pseudo code [3]:

From right to left
Result C =P°*modm
1. K=2""modm
2. Z =Monpro(1, K,M)
3. P =Monpro(P, K, m)

Proceedings of Small Systems Simulation Symposium 2014, Nis, Serbia, 12th-14th February 2014

4. fromi=0toi=k-1
a. iIf & =1then Z = Monpro(Z,P,m)
b. P =Monpto(P, P,m)

5. Z =Monpro(1, Z, m)

6.C=Z
Listing 4

Algorithm from left to right is presented as [3]:

From left to right
Result C =P°modm
1. K=2"modm
2. Z =Monpro(1, K,M)
3. P =Monpro(P, K, m)
4. fromi=k-1toi=0
a. Z =Monpto(Z,Z,m)
b. if & =1then Z = Monpro(Z, P, m)
5. Z =Monpro(1, Z, m)

6.C=Z
Listing 5

For right to left algorithm, two Montgomery modular
multipliers are needed working in parallel, while for left to
right algorithm, only one sequentially operated multiplier is
needed. Algorithm from left to right saves the number of
Montgomery multipliers, while the number of calculation
iterations doubles. Number of cycles for right to left
algorithm is k+3, and for left to right algorithm 2(k+3).

I1l. HARDWARE IMPLEMENTATION

Figure 1 shows Montgomery modular multiplier
architecture with one bit scanning (Listing 1). It consists of
C_sig and S_sig registers, shift register, multiplexer for
signal routing, CSA network and control logic. Role of
C_sig and S_sig registers is to temporary memorize the
current result. Shift register on its output generate bit b;.
Signals 0 and A are routed depending of the value of bit b;
towards CSA network input. CSA network consists of two
CSA. Inputs of CSA network are C_sig and S_sig signals,
and output signals of first and second multiplexer. CSA
network output signal states are memorized in C_sig and
S_sig registers. Control logic controls the operation of the
shift register, generate signal U; and controls drives the
state of C_sig and S_sig registers. For the final result to
come, k+2 clock cycles are needed. In first clock cycle,
registers C_sig and S_sig are reset and data B is written
into shift register. Through next k cycles, summation
defined by loop inside Listing 1 is performed. At k+2 clock
cycle, result of modular multiplication (C_sig and S_sig) is

134

converted to normal form (D) using full adder.

_shiftreg. | |

Control
logic

Fig. 1. Architecture of Montgomery modular multiplier with one
bit scanning

Figure 2 shows architecture of Montgomery modular
multiplier with two bits scanning (Listing 3). It consists of
C_sig and S_sig registers, shift register, multiplexer for
signal routing, CSA network and control logic. Role of
registers C_sig and S_sig is to temporary memorize current
result. Shift register on its output generate bites b; and bj.4.
In dependence of bits b; and b;,; value, signals 0, A and 2A
are routed towards CSA network input. Depending of the
state of signal U, and U,, signals 0, m and 2m are routed
towards CSA network over multiplexer MUX2.

0 m 2m

Control
logic

Fig. 2. Architecture of Montgomery modular multiplier with two
bits scanning

This CSA network architecture consists of four CSA
adders. CSA network inputs are C_sig and S_sig signals,
and output signals of first and second multiplexer. Output

Proceedings of Small Systems Simulation Symposium 2014, Nis, Serbia, 12th-14th February 2014

signals of CSA network is then memorized into registers
C_sig and S_sig. Control logic control shift register,
generates U; and U, signals and control operating states of
C_sig and S_sig registers. In order to obtain the final result,
k/2+2 clock cycles are needed. In the first clock cycle,
registers C_sig and S_sig are reset and data B is written
into the shift register. During the next k/2 cycles,
summation defined by loop inside Listing 3 is performed.
At k/2+2 clock cycle, result of modular multiplication
(C_sig and S_sig) is converted in normal form (D) using
full adder.

Based on presented architectures, two modules for
Montgomery modular multiplication have been
implemented. The first one is with one bit scanning
Montgomery b1, and second one with two bits scanning
Montgomery b2. Modules are described using hardware
description language (VHDL) and synthesized by Quartus
Il and ModelSim software packages. Analyze of number of
required resources for module implementation, maximum
operating frequency and minimum calculation time has
been performed.

Using implemented Montgomery modules, analyze of
RSA modules for data encryption is carried out. Based on
RSA algorithm right to left and left to right with
Montgomery modular multipliers, encryption modules
RSA_Montgomery_rl_b1, RSA_Montgomery_rl_b2,
RSA_Montgomery_Ir_bl and RSA_Montgomery_Ir_b2 are
implemented. These modules are analyzed in terms of
number of used resources and maximum data encryption
speed.

IV. RESULTS

Implementation of the Montgomery modular multipliers
and RSA moduls on FPGA integrated circuit
EPACE115F29C7, family Cyclone IV, Altera [5] is done in
this paper. This component contains 266 embedded
multipliers (18x18 bits), 4 PLL blocks, 3888 Kbits of
embedded memory, 528 1/O pins and 114480 logic
elements. Preference for FPGA circuit is caused by
availability, ease of system testing, flexibility, relatively
good performances in the means of speed and power
consumption.

@ 16
& 1
Apreset |1
E) 2]
$E 640
e 3337
S] -
i 3 i il R I bid o [0 Ji1 J1z {13 [14 ji5 fis ji7
i 1
& 5.5 Y43 Ji7 430 [P1c Ji77ofoee 3490 [pze i1
& Csig %
&0

Yo 117z Yae Dis Vivwe Joee Yaad {2z it

Fig. 3. Signal waveforms of Montgomery_b1 module

L.JU\E‘“
N

o
o
o
o

E 2 683 B85
E 3] 840 540
&m0 3337 |3Ear
&0 444 [2} EER] 1778 EEES 1L fBEz

Pi 8 0 1 a £]
$ssig [eaz il 44 e} 775 H 1L [0

$csn |2 Tien T

Fig. D4 Signal waveforms of Montgomery_b2 rrzmdule

Figures 3 and 4 shows results of Montgomery bl and
Montgomery_b2 modules, respectively. For input signal
values such as: A=688, B=640 and M=3337, where k=16,
result of Montgomery modular multiplication is the number
D=111.

Figure 5 presents result of logic resources analysis
needed for implementation of previously mentioned
modules. Montgomery_ b1l module occupy less resources
comparing to Montgomery_b2 module, as a consequence of
smaller CSA network and logic for signal routing.

16000

14000 B Montgomery bl

12000 m Montgomery_b2

10000

8000

6000

4000

Number of logical elements

2000

16 32 64 128 256 512 1024

Length of data

Fig. 5. Number of used logic elements as a function of data
length

Table 1 shows module analysis results regarding
maximum operating frequency. Based on given results,
maximum operating frequency is obtained for
Montgomery bl module, at various data length. This is a
consequence of lower signal propagation time through
CSA network, consisted of two CSA adders.

TABLE |
MAXIMUM OPERATING FREQUENCY [MHZ]

k Montgomery_b1 Montgomery_b2
16 323.94 160.77
32 188.04 159.08
64 206.83 157.65
128 234.03 152.86
256 252.4 152.84
512 239.87 145.31
1024 298.33 126.2
2048 173.19 126.98

Multiplying period of maximum operating frequency
(Table I) with number of clock cycles used for processing
one data, we get minimum calculation time for one data as

Proceedings of Small Systems Simulation Symposium 2014, Nis, Serbia, 12th-14th February 2014

a function of data length. Those results are shown on Fig.
6. Lower calculation time is obtained for Montgomery b2
implementation. Maximum operating frequency of
Montgomery b2 module is slightly lower then for
Montgomery bl module, but the number of clock cycles
needed for calculation is twice lower, whereby better
results are obtained with respect to calculation time.

6

—4—Montgomery_b1l

,
/
/)

P

16

5

== Montgomery_h2

Minimum time for computation [us]

32 64 128 256 512 1024

Length of data

Fig. 6. Minimum calculation time as a function of data length

Analyzing RSA module for data encryption, following
results are obtained. On Fig. 7, number of logic elements of
implemented modules as a function of data length is
shown.

40000

W RSA_Montgomery_rl_h1

35000

W RSA_Montgomery_rl_b2
30000

RSA_Montgomery_Ir_b1l
25000

M RSA_Montgomery_Ir_h2
20000

15000

10000

Number of logical elements

5000

16 32 64 128 256 512 1024

Key length

Fig. 7. Number of used logic elements as a function of data
length

100000.00

10000.00

1000.00

—o—RSA_Montgomery_rl_bl

100.00 1 g RsA Montgomery_rl_b2

Speedencryption [kb/s]

RSA_Montgomery_Ir_bl

10.00 e RSA_Montgomery Ir_b2

1.00

16 32 64

Key length

Fig. 8. Maximum data encryption speed as a function of key
length

Least number of logic elements occupies implementation
of left to right algorithm with Montgomery modular

136

multiplier one bit scanning. Most resources have been used
by implementation of right to left algorithm with
Montgomery modular multiplier two bits scanning. Fig. 8
presents results of module analysis in terms of maximum
data encryption speed. Best results have been obtained by
right to left algorithm and Montgomery modular multiplier
with two bits scanning. For key length of 1024 bits,
maximum operating frequency is 55.32 [kb/s].

IV. CONCLUSION

Multipliers are implemented on Altera’s Cyclone
family FPGA integrated circuit EP4CE115F29C7.
Synthesis and simulation are performed by Quartus Il and
ModelSim software packages. Number of used logic
elements depends of data length and is higher for multiplies
architectures with two bits scanning. For example, for data
length of k =128 bits it is a 55% increase, and for k=1024
bits is 56%. Maximum operating frequency and minimum
calculation time also depends of data length. Modular
multiplier with one bit scanning has higher operating
frequency, and lower calculation time. Maximum
frequency of Montgomery_b1 module is in the range about
324 MHz for k=16 up to 188 MHz for k=1024 bits. For
Montgomery_b2 module, this frequency is in the range of
161 MHz up to 126 MHz. Calculation time is in the range
of 0.05us (k=16 bits) up to 5.45us (k=1024 bits) for
Montgomery bl, and from 0.06us up to 4.07us for
Montgomery b2. Average calculation time in
Montgomery b2 implementation is decreased for about
23% comparing to Montgomery_b1l implementation. Data
encryption speed is highest for Montgomery rl_b2
implementation. For key length of k=1024 bits, maximum
encryption speed is 55.32 kb/s, and number of used logic
elements is 36960. The lowest number of used logic
elements is at Montgomery_Ir_b1 implementation. For key
length of k=1024 bits, number of used logic elements is
22649, and maximum encryption speed 26.28 kb/s.

REFERENCES

[1]R. L. Rivest, A. Shamir, L. Adleman, “A Method For
Obtaining Digital Signatures And Public-Key Crypto
Systems,” Communications of the ACM, vol. 21, no. 2,
pp. 120-126, Feb., 1978.

[2] C. K. Koc. “RSA Hardware Implementation”. TR 801,

RSA Laboratories, April 1996.

V. Skobi¢, B. Doki¢, Z. Ivanovié. “FPGA
Implementacija RSA algoritma,” Proccedings of 57th
ETRAN Conference, Zlatibor, Serbia, June 3-6, 2013,
pp.EL3.8.1-5.

[4] P. L. Montgomery, “Modular Multiplication Without
Trial Division,” Mathematics of Computation, vol. 44,
no. 170, pp. 519-521, Abbrev. Apr., 1985.

[5] “Cyclone IV EPACE115F29C7 Data Sheets,”
http://www.altera.com.

[3]

