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Abstract – Montgomery architectures of modular multipliers 

with one and two bits scanning are described in this paper. 

Multipliers have been described using hardware description 

language – VHDL, and implemented on FPGA integrated circuit 

EP4CE115F29C7. Comparative analysis of multiplier regarding 

minimum calculation time, maximum operating frequency and 

number of used logic elements of integrated circuit is given. 

Based on implemented modules, analysis of RSA module for data 

encryption is performed. 
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I. INTRODUCTION 

Data protection can be achieved using symmetric and 

asymmetric algorithms. Encryption procedure using 

symmetric algorithms occurs by substitution, transposition, 

shifting, as well as logic operations (XOR) over data bytes 

(AES). These operations are much simpler for hardware 

implementation, which leads to lower number of resources 

and higher operating speed of encryption module. 

Symmetric algorithms are mostly used for data encryption. 

Asymmetric algorithms are for one order of magnitude 

slower than symmetric ones. They are used for keys 

exchange and digital signatures. Data protection occur 

using quite demanding mathematical operations. One of the 

most commonly used asymmetric algorithms is RSA 

algorithm [1]. Data protection procedure occurs in a way 

that key message (P) is exponentiated onto public key (e), 

and then determine the remaining of dividing operation 

with public key (m). For hardware realization of RSA 

algorithm, binary algorithm of modular exponentiation is 

typically used [2, 3]. Using binary algorithm, modular 

exponentiation procedure is reduced to iterative modular 

multiplication (A∙Bmodm). Some of modular multiplication 

algorithms are described in [2]. One of the most effective 

algorithms is Montgomery algorithm [4]. Calculation 

procedure is carried out by iterative summation. This 

algorithm is highly efficient and very simple for hardware 

implementation. It is used in algorithms with a large 

number of modular multiplications.    

In second chapter, fundamentals of Montgomery 

algorithm modular multiplication are given. Two ways of 

Montgomery modular multiplication are described: with 

scanning of one bit and two bits. Two RSA data encryption 

algorithms using Montgomery modular multiplier have 

been described. In third chapter, hardware realization of 

Montgomery module is described. Fourth chapter presents 

simulation results of implemented modules. Results are 

summarized in the conclusion. 

II. MONTGOMERY ALGORITHM

A. Montgomery algorithm 

Montgomery algorithm is efficient and simple for 

hardware implementation. The result of modular 

multiplication is given by the following equation: 

1MonPro( , , ) modA B m A B R m (1) 

The advantage of this algorithm is that calculation is 

performed without dividing with m, but dividing with 

number R. Number R is taken in the form of 2
k
, where k is 

the number of bits needed to represent input data. Number 

R
-1

 is inverse number of number R modulo m. For hardware 

implementation, dividing with 2
k
 is simple shifting 

operation of k bits to the right. As shown in equation (1), 

the result of modular multiplication contains number  R
-1

. 

This number can be eliminated so that input data A and B 

convert to leftover system modulo m (A=MonPro(A,R,m), 

B=MonPro(B,R,m)), and then the result of modular 

multiplication D converts so that multiplies with number 1 

(D=Monpro(D,1,m)). As a result, we have D=A·Bmodm. 

Montgomery algorithm modular multiplication is given by 

the following pseudo code: 

Result D=(A·B)modm 

1. D=0

2. from i=0 to i=k-1

a. D = D + A·Bi

b. D = (D + D(0)·m)/2

3. output D
Listing 1 

Number k is the number of bits used for data 

representation. This algorithm passes through k iterations, 

where k is the number of bits used for representation of 

numbers A, B and m. Value of bits of number B (bi) has 

been scanned. Depending on the value of scanned bit bi 

number A is added to number D. Then, in order to perform 

reduction with 2 in every iteration, if the current result D is 

odd, number m (m is a prime number in RSA algorithm) is 
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added. If not, zero is added. For this realization, two 

adders, one shift register and control logic is needed. 

Number of iterations can be reduced by scanning two 

bits of number B (bi, bi+1) in one iteration. Now, number of 

cycles needed for calculation is halved (g=k/2). Based on 

this, Montgomery algorithm pseudo code can be written as 

follows: 

Result D=(A·B)modm 

1. D=0

2. from i=0 to i=g-1

a. D = D + A·Bi

b. D = (D + D(0)·m)/2

c. D = D + A·Bi+1

e. D = (D + D(0)·m)/2

3. output D
Listing 2 

Summation, depending of value of scanned bits bi, bi+1, can 

be grouped in one equation, as well as the condition for 

summation with number m. At the end, result is divided by 

4, i.e. content is shifted two positions to the right. Based on 

these transformations, following algorithm is formed: 

Result D=(A·B)modm 

1. D = 0

2. from i=0 to i=g-1

a. D = D + A·Bi + 2A·Bi+1

b. D = (D + U1·m + U2·2m)

c. D = D/4

3. output D
Listing 3 

Condition U1 for summation of number m with result D has 

been defined using the equation: 

1 (0) (0)iU b A D  (2) 

while condition U2 for summation of number 2m with 

result is defined with: 

1

1

2

[1,0] [1,0] [1,0]

[1,0]

2 [1,0]

(1)

i

i

U D b A

U M

b A

U U

(3) 

First algorithm that scans only one bit bi passes through k 

iterations. Second algorithm that scans two consecutive bits 

bi and bi+1 passes through k/2 iterations. In the first one, 

summation is performed with numbers A and m, depending 

on current result value and value of bit bi. Second one, in 

one iteration adds numbers A, 2∙A, m and 2∙m, depending 

on the state of conditions U1, U2 and values of bi and bi+1.  

B. Carry Save Adders 

For implementation of Montgomery algorithm modular 

multiplication, special attention is paid to the 

implementation of the adder. Better performances 

regarding speed can be adjusted using CSA (Carry Save 

Adders). CSA has three input and two output vectors. 

Summation result consists of vector C and vector S, 

represented in redundant form. Vector C represents carry 

bit vector, while vector S is vector of the current bit sum. 

The summation result is: 

( , )C S X Y Z (4) 

Carry bit in CSA realization does not propagate through 

full adders, but it’s remembered in the shape of vector C. 

Propagation time of carry bit is eliminated, and hence result 

waiting time has been reduced. In order to get final result, 

vectors C and S needs to be summated using full adders, 

e.g. RCA (Ripple Carry Adder). 

C. RSA algorithm 

Montgomery modular multipliers are used for 

implementation of RSA module for data protection. Data 

encryption using RSA algorithm is performed as follows: 

modeC P m  

where P is data that needs to be encrypted, e and m are 

public keys, and C encrypted data. Data decryption is 

performed as follows: 

moddP C m  

where the pair of numbers d and m is a private key. 

Encryption and decryption procedures are very similar. For 

encryption, public key e has been used as exponent, and 

private key d for decryption. For hardware implementation 

of modular exponentiation, method of exponent bit 

scanning is suitable [2]. Depending of the direction of 

scanning, there are two methods: scanning from left to right 

and from right to left. Algorithm from right to left is shown 

by the following pseudo code [3]: 

From right to left 

Result modeC P m  

1. 22 modnK m  

2. (1, , )Z Monpro K M

3. ( , , )P Monpro P K m
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4. from 0i  to 1i k

a. if 1ie then ( , , )Z Monpro Z P m

b. ( , , )P Monpto P P m

5. (1, , )Z Monpro Z m

6. C Z
Listing 4 

Algorithm from left to right is presented as [3]: 

From left to right 

Result modeC P m  

1. 22 modnK m  

2. (1, , )Z Monpro K M

3. ( , , )P Monpro P K m

4. from 1i k  to 0i

a. ( , , )Z Monpto Z Z m

b. if 1ie then ( , , )Z Monpro Z P m

5. (1, , )Z Monpro Z m

6. C Z
Listing 5 

For right to left algorithm, two Montgomery modular 

multipliers are needed working in parallel, while for left to 

right algorithm, only one sequentially operated multiplier is 

needed. Algorithm from left to right saves the number of 

Montgomery multipliers, while the number of calculation 

iterations doubles. Number of cycles for right to left 

algorithm is k+3, and for left to right algorithm 2(k+3). 

III. HARDWARE IMPLEMENTATION

Figure 1 shows Montgomery modular multiplier 

architecture with one bit scanning (Listing 1). It consists of 

C_sig and S_sig registers, shift register, multiplexer for 

signal routing, CSA network and control logic. Role of 

C_sig and S_sig registers is to temporary memorize the 

current result. Shift register on its output generate bit bi. 

Signals 0 and A are routed depending of the value of bit bi 

towards CSA network input. CSA network consists of two 

CSA. Inputs of CSA network are C_sig and S_sig signals, 

and output signals of first and second multiplexer. CSA 

network output signal states are memorized in C_sig and 

S_sig registers. Control logic controls the operation of the 

shift register, generate signal U1 and controls drives the 

state of C_sig and S_sig registers. For the final result to 

come, k+2 clock cycles are needed. In first clock cycle, 

registers C_sig and S_sig are reset and data B is written 

into shift register. Through next k cycles, summation 

defined by loop inside Listing 1 is performed. At k+2 clock 

cycle, result of modular multiplication (C_sig and S_sig) is 

converted to normal form (D) using full adder. 

Fig. 1.  Architecture of Montgomery modular multiplier with one 

bit scanning  

Figure 2 shows architecture of Montgomery modular 

multiplier with two bits scanning (Listing 3). It consists of 

C_sig and S_sig registers, shift register, multiplexer for 

signal routing, CSA network and control logic. Role of 

registers C_sig and S_sig is to temporary memorize current 

result. Shift register on its output generate bites bi and bi+1. 

In dependence of bits bi and bi+1 value, signals  0, A and 2A 

are routed towards CSA network input. Depending of the 

state of signal U1 and U2, signals 0, m and 2m are routed 

towards CSA network over multiplexer MUX2.  

Fig. 2.  Architecture of Montgomery modular multiplier with two 

bits scanning  

This CSA network architecture consists of four CSA 

adders. CSA network inputs are C_sig and S_sig signals, 

and output signals of first and second multiplexer. Output 
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signals of CSA network is then memorized into registers 

C_sig and S_sig. Control logic control shift register, 

generates U1 and U2 signals and control operating states of 

C_sig and S_sig registers. In order to obtain the final result, 

k/2+2 clock cycles are needed. In the first clock cycle, 

registers C_sig and S_sig are reset and data B is written 

into the shift register. During the next k/2 cycles, 

summation defined by loop inside Listing 3 is performed. 

At k/2+2 clock cycle, result of modular multiplication 

(C_sig and S_sig) is converted in normal form (D) using 

full adder. 

Based on presented architectures, two modules for 

Montgomery modular multiplication have been 

implemented. The first one is with one bit scanning 

Montgomery_b1, and second one with two bits scanning 

Montgomery_b2. Modules are described using hardware 

description language (VHDL) and synthesized by Quartus 

II and ModelSim software packages. Analyze of number of 

required resources for module implementation, maximum 

operating frequency and minimum calculation time has 

been performed.  

Using implemented Montgomery modules, analyze of 

RSA modules for data encryption is carried out. Based on 

RSA algorithm right to left and left to right with 

Montgomery modular multipliers, encryption modules 

RSA_Montgomery_rl_b1, RSA_Montgomery_rl_b2, 

RSA_Montgomery_lr_b1 and RSA_Montgomery_lr_b2 are 

implemented. These modules are analyzed in terms of 

number of used resources and maximum data encryption 

speed. 

IV. RESULTS

Implementation of the Montgomery modular multipliers 

and RSA moduls on FPGA integrated circuit 

EP4CE115F29C7, family Cyclone IV, Altera [5] is done in 

this paper. This component contains 266 embedded 

multipliers (18x18 bits), 4 PLL blocks, 3888 Kbits of 

embedded memory, 528 I/O pins and 114480 logic 

elements. Preference for FPGA circuit is caused by 

availability, ease of system testing, flexibility, relatively 

good performances in the means of speed and power 

consumption. 

Fig. 3.  Signal waveforms of Montgomery_b1 module 

Fig. 4.  Signal waveforms of Montgomery_b2 module 

Figures 3 and 4 shows results of Montgomery_b1 and 

Montgomery_b2 modules, respectively. For input signal 

values such as: A=688, B=640 and M=3337, where k=16, 

result of Montgomery modular multiplication is the number 

D=111. 

Figure 5 presents result of logic resources analysis 

needed for implementation of previously mentioned 

modules. Montgomery_b1 module occupy less resources 

comparing to Montgomery_b2 module, as a consequence of 

smaller CSA network and logic for signal routing. 

Fig. 5.  Number of used logic elements as a function of data 

length 

Table 1 shows module analysis results regarding 

maximum operating frequency. Based on given results, 

maximum operating frequency is obtained for 

Montgomery_b1 module, at various data length. This is a 

consequence of lower signal propagation time through 

CSA network, consisted of two CSA adders. 

TABLE I 

MAXIMUM OPERATING FREQUENCY [MHZ] 

k Montgomery_b1 Montgomery_b2 

16 323.94 160.77 

32 188.04 159.08 

64 206.83 157.65 

128 234.03 152.86 

256 252.4 152.84 

512 239.87 145.31 

1024 298.33 126.2 

2048 173.19 126.98 

Multiplying period of maximum operating frequency 

(Table I) with number of clock cycles used for processing 

one data, we get minimum calculation time for one data as 
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a function of data length. Those results are shown on Fig. 

6. Lower calculation time is obtained for Montgomery_b2

implementation. Maximum operating frequency of 

Montgomery_b2 module is slightly lower then for 

Montgomery_b1 module, but the number of clock cycles 

needed for calculation is twice lower, whereby better 

results are obtained with respect to calculation time. 

Fig. 6.  Minimum calculation time as a function of data length 

Analyzing RSA module for data encryption, following 

results are obtained. On Fig. 7, number of logic elements of 

implemented modules as a function of data length is 

shown. 

Fig. 7.  Number of used logic elements as a function of data 

length 

Fig. 8.  Maximum data encryption speed as a function of key 

length 

Least number of logic elements occupies implementation 

of left to right algorithm with Montgomery modular 

multiplier one bit scanning. Most resources have been used 

by implementation of right to left algorithm with 

Montgomery modular multiplier two bits scanning. Fig. 8 

presents results of module analysis in terms of maximum 

data encryption speed. Best results have been obtained by 

right to left algorithm and Montgomery modular multiplier 

with two bits scanning. For key length of 1024 bits, 

maximum operating frequency is 55.32 [kb/s].  

IV. CONCLUSION

Multipliers are implemented on Altera’s Cyclone 

family FPGA integrated circuit EP4CE115F29C7. 

Synthesis and simulation are performed by Quartus II and 

ModelSim software packages. Number of used logic 

elements depends of data length and is higher for multiplies 

architectures with two bits scanning. For example, for data 

length of k =128 bits it is a 55% increase, and for k=1024 

bits is 56%. Maximum operating frequency and minimum 

calculation time also depends of data length. Modular 

multiplier with one bit scanning has higher operating 

frequency, and lower calculation time. Maximum 

frequency of Montgomery_b1 module is in the range about 

324 MHz for k=16 up to 188 MHz for k=1024 bits. For 

Montgomery_b2 module, this frequency is in the range of 

161 MHz up to 126 MHz. Calculation time is in the range 

of 0.05µs (k=16 bits) up to 5.45µs (k=1024 bits) for 

Montgomery_b1, and from 0.06µs up to 4.07µs for 

Montgomery_b2. Average calculation time in 

Montgomery_b2 implementation is decreased for about 

23% comparing to Montgomery_b1 implementation. Data 

encryption speed is highest for Montgomery_rl_b2 

implementation. For key length of k=1024 bits, maximum 

encryption speed is 55.32 kb/s, and number of used logic 

elements is 36960. The lowest number of used logic 

elements is at Montgomery_lr_b1 implementation. For key 

length of k=1024 bits, number of used logic elements is 

22649, and maximum encryption speed 26.28 kb/s. 
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